
Venti: a new approach to archival storage

Sean Quinlan and Sean Dorward
Bell Labs, Lucent Technologies

Abstract

This paper describes a network storage system, called
Venti, intended for archival data. In this system, a
unique hash of a block’s contents acts as the block
identifier for read and write operations. This approach
enforces a write-once policy, preventing accidental or
malicious destruction of data. In addition, duplicate
copies of a block can be coalesced, reducing the
consumption of storage and simplifying the
implementation of clients. Venti is a building block for
constructing a variety of storage applications such as
logical backup, physical backup, and snapshot file
systems.

We have built a prototype of the system and present
some preliminary performance results. The system uses
magnetic disks as the storage technology, resulting in
an access time for archival data that is comparable to
non-archival data. The feasibility of the write-once
model for storage is demonstrated using data from over
a decade’s use of two Plan 9 file systems.

1. Introduction

Archival storage is a second class citizen. Many
computer environments provide access to a few recent
versions of the information stored in file systems and
databases, though this access can be tedious and may
require the assistance of a system administrator. Less
common is the ability for a user to examine data from
last month or last year or last decade. Such a feature
may not be needed frequently, but when it is needed it
is often crucial.

The growth in capacity of storage technologies exceeds
the ability of many users to generate data, making it
practical to archive data in perpetuity. Plan 9, the
computing environment that the authors use, includes a
file system that stores archival data to an optical
jukebox [16, 17]. Ken Thompson observed that, for our
usage patterns, the capacity of the jukebox could be
considered infinite. In the time it took for us to fill the
jukebox, the improvement in technology would allow
us to upgrade to a new jukebox with twice the capacity.

Abundant storage suggests that an archival system
impose a write-once policy. Such a policy prohibits
either a user or administrator from deleting or
modifying data once it is stored. This approach greatly
reduces the opportunities for accidental or malicious
data loss and simplifies the system’s implementation.

Moreover, our experience with Plan 9 is that a write-
once policy changes the way one views storage.
Obviously, some data is temporary, derivative, or so
large that it is either undesirable or impractical to retain
forever and should not be archived. However, once it is
decided that the data is worth keeping, the resources
needed to store the data have been consumed and
cannot be reclaimed. This eliminates the task of
periodically “cleaning up” and deciding whether the
data is still worth keeping. More thought is required
before storing the data to a write-once archive, but as
the cost of storage continues to fall, this becomes an
easy decision.

This paper describes the design and implementation of
an archival server, called Venti. The goal of Venti is to
provide a write-once archival repository that can be
shared by multiple client machines and applications. In
addition, by using magnetic disks as the primary
storage technology, the performance of the system
approaches that of non-archival storage.

2. Background

A prevalent form of archival storage is the regular
backup of data to magnetic tape [15]. A typical scenario
is to provide backup as a central service for a number of
client machines. Client software interfaces with a
database or file system and determines what data to
back up. The data is copied from the client to the tape
device, often over a network, and a record of what was
copied is stored in a catalog database.

Restoring data from a tape backup system can be
tedious and error prone. The backup system violates the
access permission of the file system, requiring a system
administrator or privileged software to perform the task.
Since they are tedious, restore operations are infrequent
and problems with the process may go undetected.
Potential sources of error abound: tapes are mislabeled

or reused or lost, drives wander out of alignment and
cannot read their old tapes, technology becomes
obsolete.

For tape backup systems, a tradeoff exists between the
performance of backup and restore operations [1]. A
full backup simplifies the process of restoring data
since all the data is copied to a continuous region on the
tape media. For large file systems and databases,
incremental backups are more efficient to generate, but
such backups are not self-contained; the data for a
restore operation is scattered across multiple
incremental backups and perhaps multiple tapes. The
conventional solution is to limit the extent of this
scattering by performing a full backup followed by a
small number of incremental backups.

File systems such as Plan 9 [16, 17], WAFL [5], and
AFS [7] provide a more unified approach to the backup
problem by implementing a snapshot feature. A
snapshot is a consistent read-only view of the file
system at some point in the past. The snapshot retains
the file system permissions and can be accessed with
standard tools (ls, cat, cp, grep, diff) without special
privileges or assistance from an administrator. In our
experience, snapshots are a relied-upon and frequently-
used resource because they are always available and
easy to access.

Snapshots avoid the tradeoff between full and
incremental backups. Each snapshot is a complete file
system tree, much like a full backup. The
implementation, however, resembles an incremental
backup because the snapshots and the active file system
share any blocks that remain unmodified; a snapshot
only requires additional storage for the blocks that have
changed. To achieve reasonable performance, the
device that stores the snapshots must efficiently support
random access, limiting the suitability of tape storage
for this approach.

In the WAFL and AFS systems, snapshots are
ephemeral; only a small number of recent versions of
the file system are retained. This policy is reasonable
since the most recent versions of files are the most
useful. For these systems, archival storage requires an
additional mechanism such as tape backup.

The philosophy of the Plan 9 file system is that random
access storage is sufficiently cheap that it is feasible to
retain snapshots permanently. The storage required to
retain all daily snapshots of a file system is surprisingly
modest; later in the paper we present statistics for two
file servers that have been in use over the last 10 years.

Like Plan 9, the Elephant file system [18] retains many
versions of data. This system allows a variety of storage
reclamation policies that determine when a version of a
file should be deleted. In particular, “landmark”
versions of files are retained permanently and provide
an archival record.

3. The Venti Archival Server

Venti is a block-level network storage system intended
for archival data. The interface to the system is a simple
protocol that enables client applications to read and
write variable sized blocks of data. Venti itself does not
provide the services of a file or backup system, but
rather the backend archival storage for these types of
applications.

Venti identifies data blocks by a hash of their contents.
By using a collision-resistant hash function with a
sufficiently large output, it is possible to consider the
hash of a data block as unique. Such a unique hash is
called the fingerprint of a block and can be used as the
address for read and write operations. This approach
results in a storage system with a number of interesting
properties.

As blocks are addressed by the fingerprint of their
contents, a block cannot be modified without changing
its address; the behavior is intrinsically write-once. This
property distinguishes Venti from most other storage
systems, in which the address of a block and its
contents are independent.

Moreover, writes are idempotent. Multiple writes of the
same data can be coalesced and do not require
additional storage space. This property can greatly
increase the effective storage capacity of the server
since it does not rely on the behavior of client
applications. For example, an incremental backup
application may not be able to determine exactly which
blocks have changed, resulting in unnecessary
duplication of data. On Venti, such duplicate blocks
will be discarded and only one copy of the data will be
retained. In fact, replacing the incremental backup with
a full backup will consume the same amount of storage.
Even duplicate data from different applications and
machines can be eliminated if the clients write the data
using the same block size and alignment.

The hash function can be viewed as generating a
universal name space for data blocks. Without
cooperating or coordinating, multiple clients can share
this name space and share a Venti server. Moreover, the
block level interface places few restrictions on the

structures and format that clients use to store their data.
In contrast, traditional backup and archival systems
require more centralized control. For example, backup
systems include some form of job scheduler to serialize
access to tape devices and may only support a small
number of predetermined data formats so that the
catalog system can extract pertinent meta-data.

Venti provides inherent integrity checking of data.
When a block is retrieved, both the client and the server
can compute the fingerprint of the data and compare it
to the requested fingerprint. This operation allows the
client to avoid errors from undetected data corruption
and enables the server to identify when error recovery
is necessary.

Using the fingerprint of a block as its identity facilitates
features such as replication, caching, and load
balancing. Since the contents of a particular block are
immutable, the problem of data coherency is greatly
reduced; a cache or a mirror cannot contain a stale or
out of date version of a block.

3.1. Choice of Hash Function

The design of Venti requires a hash function that
generates a unique fingerprint for every data block that
a client may want to store. Obviously, if the size of the
fingerprint is smaller than the size of the data blocks,
such a hash function cannot exist since there are fewer
possible fingerprints than blocks. If the fingerprint is
large enough and randomly distributed, this problem
does not arise in practice. For a server of a given
capacity, the likelihood that two different blocks will
have the same hash value, also known as a collision,
can be determined. If the probability of a collision is
vanishingly small, we can be confident that each
fingerprint is unique.

It is desirable that Venti employ a cryptographic hash
function. For such a function, it is computationally
infeasible to find two distinct inputs that hash to the
same value [10]. This property is important because it
prevents a malicious client from intentionally creating
blocks that violate the assumption that each block has a
unique fingerprint. As an additional benefit, using a
cryptographic hash function strengthens a client’s
integrity check, preventing a malicious server from
fulfilling a read request with fraudulent data. If the
fingerprint of the returned block matches the requested
fingerprint, the client can be confident the server
returned the original data.

Venti uses the Sha1 hash function [13] developed by
the US National Institute for Standards and Technology
(NIST). Sha1 is a popular hash algorithm for many
security systems and, to date, there are no known
collisions. The output of Sha1 is a 160 bit (20 byte)
hash value. Software implementations of Sha1 are
relatively efficient; for example, a 700Mhz Pentium 3
can compute the Sha1 hash of 8 Kbyte data blocks in
about 130 microseconds, a rate of 60 Mbytes per
second.

Are the 160 bit hash values generated by Sha1 large
enough to ensure the fingerprint of every block is
unique? Assuming random hash values with a uniform
distribution, a collection of n different data blocks and a
hash function that generates b bits, the probability p that
there will be one or more collisions is bounded by the
number of pairs of blocks multiplied by the probability
that a given pair will collide, i.e.

b

nn
p

2

1

2

1)(×−≤ .

Today, a large storage system may contain a petabyte

(1510 bytes) of data. Consider an even larger system

that contains an exabyte (1810 bytes) stored as 8 Kbyte

blocks (1410~ blocks). Using the Sha1 hash function,

the probability of a collision is less than 2010- . Such a
scenario seems sufficiently unlikely that we ignore it
and use the Sha1 hash as a unique identifier for a block.
Obviously, as storage technology advances, it may
become feasible to store much more than an exabyte, at
which point it maybe necessary to move to a larger hash
function. NIST has already proposed variants of Sha1
that produce 256, 384, and 512 bit results [14]. For the
immediate future, however, Sha1 is a suitable choice
for generating the fingerprint of a block.

3.2. Choice of Storage Technology

When the Plan 9 file system was designed in 1989,
optical jukeboxes offered high capacity with
respectable random access performance and thus were
an obvious candidate for archival storage. The last
decade, however, has seen the capacity of magnetic
disks increase at a far faster rate than optical
technologies [20]. Today, a disk array costs less than
the equivalent capacity optical jukebox and occupies
less physical space. Disk technology is even
approaching tape in cost per bit.

Magnetic disk storage is not as stable or permanent as
optical media. Reliability can be improved with
technology such as RAID, but unlike write-once optical
disks, there is little protection from erasure due to
failures of the storage server or RAID array firmware.
This issue is discussed in Section 7.

Using magnetic disks for Venti has the benefit of
reducing the disparity in performance between
conventional and archival storage. Operations that
previously required data to be restored to magnetic disk
can be accomplished directly from the archive.
Similarly, the archive can contain the primary copy of
often-accessed read-only data. In effect, archival data
need not be further down the storage hierarchy; it is
differentiated by the write-once policy of the server.

4. Applications

Venti is a building block on which to construct a variety
of storage applications. Venti provides a large
repository for data that can be shared by many clients,
much as tape libraries are currently the foundation of
many centralized backup systems. Applications need to
accommodate the unique properties of Venti, which are
different from traditional block level storage devices,
but these properties enable a number of interesting
features.

Applications use the block level service provided by
Venti to store more complex data structures. Data is
divided into blocks and written to the server. To enable
this data to be retrieved, the application must record the
fingerprints of these blocks. One approach is to pack
the fingerprints into additional blocks, called pointer
blocks, that are also written to the server, a process that
can be repeated recursively until a single fingerprint is
obtained. This fingerprint represents the root of a tree of
blocks and corresponds to a hierarchical hash of the
original data.

A simple data structure for storing a linear sequence of
data blocks is shown in Figure 1. The data blocks are
located via a fixed depth tree of pointer blocks which
itself is addressed by a root fingerprint. Applications
can use such a structure to store a single file or to
mimic the behavior of a physical device such as a tape
or a disk drive. The write-once nature of Venti does not
allow such a tree to be modified, but new versions of
the tree can be generated efficiently by storing the new
or modified data blocks and reusing the unchanged
sections of the tree as depicted in Figure 2.

D0

D1

D6

D7

…

…

…

…

…

H(D)0

H(P)1

H(D)1

H(P)2

H(D)6

H(D)7

P1

P0

P2

Root H(P)0

Figure 1. A tree structure for storing a linear sequence
of blocks

D0

D1

D6

D8

D7

…

…

…

…

…

…

…

H(D)0

H(P)1

H(P)1

H(D)1

H(P)2

H(P)4

H(D)6

H(D)6

H(D)7

H(D)7

P1

P0

P3

P2

P4

Root H(P)0

Root H(P)3

Figure 2. Build a new version of the tree.

By mixing data and fingerprints in a block, more
complex data structures can be constructed. For
example, a structure for storing a file system may
include three types of blocks: directory, pointer, and
data. A directory block combines the meta information
for a file and the fingerprint to a tree of data blocks
containing the file’s contents. The depth of the tree can
be determined from the size of the file, assuming the
pointer and data blocks have a fixed size. Other
structures are obviously possible. Venti’s block-level
interface leaves the choice of format to client
applications and different data structures can coexist on
a single server.

The following sections describes three applications that
use Venti as an archival data repository: a user level
archive utility called vac, a proposal for a physical level
backup utility, and our preliminary work on a new
version of the Plan 9 file system.

4.1. Vac

Vac is an application for storing a collection of files and
directories as a single object, similar in functionality to
the utilities tar and zip. With vac, the contents of the
selected files are stored as a tree of blocks on a Venti
server. The root fingerprint for this tree is written to a
vac archive file specified by the user, which consists of
an ASCII representation of the 20 byte root fingerprint
plus a fixed header string, and is always 45 bytes long.
A corresponding program, called unvac, enables the
user to restore files from a vac archive. Naturally,
unvac requires access to the Venti server that contains
the actual data, but in most situations this is transparent.
For a user, it appears that vac compresses any amount
of data down to 45 bytes.

An important attribute of vac is that it writes each file
as a separate collection of Venti blocks, thus ensuring
that duplicate copies of a file will be coalesced on the
server. If multiple users vac the same data, only one
copy will be stored on the server. Similarly, a user may
repeatedly vac a directory over time and even if the
contents of the directory change, the additional storage
consumed on the server will be related to the extent of
the changes rather than the total size of the contents.
Since Venti coalesces data at the block level, even files
that change may share many blocks with previous
versions and thus require little space on the server; log
and database files are good examples of this scenario.

On many Unix systems, the dump utility is used to back
up file systems. Dump has the ability to perform
incremental backups of data; a user specifies a dump
level, and only files that are new or have changed since
the last dump at this level are written to the archive. To
implement incremental backups, dump examines the
modified time associated with each file, which is an
efficient method of filtering out the unchanged files.

Vac also implements an incremental option based on
the file modification times. The user specifies an
existing vac file and this archive is used to reduce the
number of blocks written to the Venti server. For each
file, vac examines the modified time in both the file
system and the vac archive. If they are the same, vac
copies the fingerprint for the file from the old archive
into the new archive. Copying just the 20-byte
fingerprint enables the new archive to include the entire
file without reading the data from the file system nor
writing the data across the network to the Venti server.
In addition, unlike an incremental dump, the resulting
archive will be identical to an archive generated without
the incremental option; it is only a performance

improvement. This means there is no need to have
multiple levels of backups, some incremental, some
full, and so restore operations are greatly simplified.

A variant of the incremental option improves the
backup of files without reference to modification times.
As vac reads a file, it computes the fingerprint for each
block. Concurrently, the pointer blocks of the old
archive are examined to determine the fingerprint for
the block at the same offset in the old version of the
file. If the fingerprints are the same, the block does not
need to be written to Venti. Instead, the fingerprint can
simply be copied into the appropriate pointer block.
This optimization reduces the number of writes to the
Venti server, saving both network and disk bandwidth.
Like the file level optimization above, the resulting vac
file is no different from the one produced without this
optimization. It does, however, require the data for the
file to be read and is only effective if there are a
significant number of unchanged blocks.

4.2. Physical backup

Utilities such as vac, tar, and dump archive data at the
file or logical level: they walk the file hierarchy
converting both data and meta-data into their own
internal format. An alternative approach is block-level
or physical backup, in which the disk blocks that make
up the file system are directly copied without
interpretation. Physical backup has a number of benefits
including simplicity and potentially much higher
throughput [8]. A physical backup utility for file
systems that stores the resulting data on Venti appears
attractive, though we have not yet implemented such an
application.

The simplest form of physical backup is to copy the raw
contents of one or mores disk drives to Venti. The
backup also includes a tree of pointer blocks, which
enables access to the data blocks. Like vac, the end
result is a single fingerprint representing the root of the
tree; that fingerprint needs to be recorded outside of
Venti.

Coalescing duplicate blocks is the main advantage of
making a physical backup to Venti rather than copying
the data to another storage medium such as tape. Since
file systems are inherently block based, we expect
coalescing to be effective. Not only will backups of a
file system over time share many unchanged blocks, but
even file systems for different machines that are
running the same operating system may have many
blocks in common. As with vac, the user sees a full

backup of the device, while retaining the storage space
advantages of an incremental backup.

One enhancement to physical backup is to copy only
blocks that are actively in use in the file system. For
most file system formats it is relatively easy to
determine if a block is in use or free without walking
the file system hierarchy. Free blocks generally contain
the remnants of temporary files that were created and
removed in the time between backups and it is
advantageous not to store such blocks. This
optimization requires that the backup format be able to
represent missing blocks, which can easily be achieved
on Venti by storing a null value for the appropriate
entry in the pointer tree.

The random access performance of Venti is sufficiently
good that it is possible to use a physical backup without
first restoring it to disk. With operating system support,
it is feasible to directly mount a backup file system
image from Venti. Access to this file system is read
only, but it provides a natural method of restoring a
subset of files. For situations where a full restore is
required, it might be possible to do this restore in a lazy
fashion, copying blocks from Venti to the file system as
needed, instead of copying the entire contents of the file
system before resuming normal operation.

The time to perform a physical backup can be reduced
using a variety of incremental techniques. Like vac, the
backup utility can compute the fingerprint of each block
and compare this fingerprint with the appropriate entry
in the pointer tree of a previous backup. This
optimization reduces the number of writes to the Venti
server. If the file system provides information about
which blocks have changed, as is the case with WAFL,
the backup utility can avoid even reading the
unchanged blocks. Again, a major advantage of using
Venti is that the backup utility can implement these
incremental techniques while still providing the user
with a full backup. The backup utility writes the new
blocks to the Venti server and constructs a pointer tree
with the appropriate fingerprint for the unchanged
blocks.

4.3. Plan 9 File system

When combined with a small amount of read/write
storage, Venti can be used as the primary location for
data rather than a place to store backups. A new version
of the Plan 9 file system, which we are developing,
exemplifies this approach.

Previously, the Plan 9 file system was stored on a
combination of magnetic disks and a write-once optical
jukebox. The jukebox furnishes the permanent storage
for the system, while the magnetic disks act as a cache
for the jukebox. The cache provides faster file access
and, more importantly, accumulates the changes to the
file system during the period between snapshots. When
a snapshot is taken, new or modified blocks are written
from the disk cache to the jukebox.

The disk cache can be smaller than the active file
system, needing only to be big enough to contain the
daily changes to the file system. However, accesses that
miss the cache are significantly slower since changing
platters in the jukebox takes several seconds. This
performance penalty makes certain operations on old
snapshots prohibitively expensive. Also, on the rare
occasions when the disk cache has been reinitialized
due to corruption, the file server spends several days
filling the cache before performance returns to normal.

The new version of the Plan 9 file system uses Venti
instead of an optical jukebox as its storage device.
Since the performance of Venti is comparable to disk,
this substitution equalizes access both to the active and
to the archival view of the file system. It also allows the
disk cache to be quite small; the cache accumulates
changes to the file system between snapshots, but does
not speed file access.

5. Implementation

We have implemented a prototype of Venti. The
implementation uses an append-only log of data blocks
and an index that maps fingerprints to locations in this
log. It also includes a number of features that improve
robustness and performance. This section gives a brief
overview of the implementation. Figure 3 shows a
block diagram of the server.

Block
Cache

Index
Cache Data

Index
Client

Client

Client

Network

FS

Venti Server

Figure 3. A block diagram of the Venti prototype.

Since Venti is intended for archival storage, one goal of
our prototype is robustness. The approach we have

taken is to separate the storage of data blocks from the
index used to locate a block. In particular, blocks are
stored in an append-only log on a RAID array of disk
drives. The simplicity of the append-only log structure
eliminates many possible software errors that might
cause data corruption and facilitates a variety of
additional integrity strategies. A separate index
structure allows a block to be efficiently located in the
log; however, the index can be regenerated from the
data log if required and thus does not have the same
reliability constraints as the log itself.

The structure of the data log is illustrated in Figure 4.
To ease maintenance, the log is divided into self-
contained sections called arenas. Each arena contains a
large number of data blocks and is sized to facilitate
operations such as copying to removable media. Within
an arena is a section for data bocks that is filled in an
append-only manner. In Venti, data blocks are variable
sized, up to a current limit of 52 Kbytes, but since
blocks are immutable they can be densely packed into
an arena without fragmentation.

Each block is prefixed by a header that describes the
contents of the block. The primary purpose of the
header is to provide integrity checking during normal
operation and to assist in data recovery. The header
includes a magic number, the fingerprint and size of the
block, the time when the block was first written, and
identity of the user that wrote it. The header also
includes a user-supplied type identifier, which is
explained in Section 7. Note, only one copy of a given
block is stored in the log, thus the user and wtime fields
correspond to the first time the block was stored to the
server.

Before storing a block in the log, an attempt is made to
compress its contents. The inclusion of data
compression increases the effective capacity of the
archive and is simple to add given the log structure.
Obviously, some blocks are incompressible. The
encoding field in the block header indicates whether the
data was compressed and, if so, the algorithm used. The
esize field indicates the size of the data after
compression, enabling the location of the next block in
the arena to be determined. The downside of using
compression is the computational cost, typically
resulting in a decrease in the rate that blocks can be
stored and retrieved. Our prototype uses a custom
Lempel-Ziv ’77 [21] algorithm that is optimized for
speed. Compression is not a performance bottleneck for
our existing server. Future implementations may benefit
from hardware solutions.

In addition to a log of data blocks, an arena includes a
header, a directory, and a trailer. The header identifies
the arena. The directory contains a copy of the block
header and offset for every block in the arena. By
replicating the headers of all the blocks in one relatively
small part of the arena, the server can rapidly check or
rebuild the system’s global block index. The directory
also facilitates error recovery if part of the arena is
destroyed or corrupted. The trailer summarizes the
current state of the arena itself, including the number of
blocks and the size of the log. Within the arena, the data
log and the directory start at opposite ends and grow
towards each other. When the arena is filled, it is
marked as sealed, and a fingerprint is computed for the
contents of the entire arena. Sealed arenas are never
modified.

arena

arena

arena

…

…

...

0

1

2

header

data

header

data

…

…

0

1

data log

…

…

header

offset

header

offset

1

0

directory

trailer

header

data

blocks

magic

fingerprint

type

size

user

wtime

encoding

esize

arena block headerdata blocks

directory

Figure 4. The format of the data log.

The basic operation of Venti is to store and retrieve
blocks based on their fingerprints. A fingerprint is 160
bits long, and the number of possible fingerprints far
exceeds the number of blocks stored on a server. The
disparity between the number of fingerprints and blocks
means it is impractical to map the fingerprint directly to
a location on a storage device. Instead, we use an index
to locate a block within the log.

We implement the index using a disk-resident hash
table as illustrated in Figure 5. The index is divided into
fixed-sized buckets, each of which is stored as a single
disk block. Each bucket contains the index map for a
small section of the fingerprint space. A hash function
is used to map fingerprints to index buckets in a
roughly uniform manner, and then the bucket is
examined using binary search. If provisioned with
sufficient buckets, the index hash table will be
relatively empty and bucket overflows will be
extremely rare. If a bucket does overflow, the extra
entries are placed in an adjacent bucket. This structure
is simple and efficient, requiring one disk access to
locate a block in almost all cases.

bucket

bucket

bucket

…

…

...

0

1

2

entry

entry

entry

…

…

0

1

2

fingerprint

type

size

address

index bucket entry

Figure 5. Format of the index.

The need to go through an index is the main
performance penalty for Venti compared to a
conventional block storage device. Our prototype uses
three techniques to increase the performance: caching,
striping, and write buffering.

The current implementation has two important caches
of approximately equal size: a block cache and an index
cache. A hit in the block cache returns the data for that
fingerprint, bypassing the both the index lookup and
access to the data log. Hits in the index cache eliminate

only the index lookup, but the entries are much smaller
and the hit rate correspondingly higher.

Unfortunately, these caches do not speed the process of
storing a new block to Venti. The server must check
that the block is not a duplicate by examining the index.
If the block is not contained on the server, it will
obviously not be in any cache. Since the fingerprint of
the block contains no internal structure, the location of
a fingerprint in the index is essentially random.
Furthermore, the archival nature of Venti means the
entire index will not fit in memory because of the large
number of blocks. Combining these factors means that
the write performance of Venti will be limited to the
random IO performance of the index disk, which for
current technology is a few hundred accesses per
second. By striping the index across multiple disks,
however, we get a linear speedup. This requires a
sufficient number of concurrent accesses, which we
assure by buffering the writes before accessing the
index.

The prototype Venti server is implemented for the Plan
9 operating system in about 10,000 lines of C. The
server runs on a dedicated dual 550Mhz Pentium III
processor system with 2 Gbyte of memory and is
accessed over a 100Mbs Ethernet network. The data log
is stored on a 500 Gbyte MaxTronic IDE Raid 5 Array
and the index resides on a string of 8 Seagate Cheetah
18XL 9 Gbyte SCSI drives.

6. Performance

Table 1 gives the preliminary performance results for
read and write operations in a variety of situations. For
comparison, we include the SCSI performance of the
RAID array. Although the performance is still several
times slower than directly accessing the disk, we
believe the results are promising and will improve as
the system matures.

The uncached sequential read performance is
particularly bad. The problem is that these sequential
reads require a random read of the index. Without
assistance from the client, the read operations are not

Table 1. The performance of read and write operations in Mbytes/s for 8 Kbyte blocks

Sequential Reads Random Reads Virgin Writes Duplicate Writes
Uncached 0.9 0.4 3.7 5.6
Index Cache 4.2 0.7 - 6.2
Block Cache 6.8 - - 6.5
Raw Raid 14.8 1.0 12.4 12.4

overlapped and do not benefit from the striping of the
index. One possible solution is a form of read-ahead.
When reading a block from the data log, it is feasible to
also read several following blocks. These extra blocks
can be added to the caches without referencing the
index. If blocks are read in the same order they were
written to the log, the latency of uncached index
lookups will be avoided. This strategy should work well
for streaming data such as multimedia files.

The basic assumption in Venti is that the growth in
capacity of disks combined with the removal of
duplicate blocks and compression of their contents
enables a model in which it is not necessary to reclaim
space by deleting archival data. To demonstrate why we
believe this model is practical, we present some
statistics derived from a decade’s use of the Plan 9 file
system.

The computing environment in which we work includes
two Plan 9 file servers named bootes and emelie.
Bootes was our primary file repository from 1990 until
1997 at which point it was superseded by emelie. Over
the life of these two file servers there have been 522
user accounts of which between 50 and 100 were active
at any given time. The file servers have hosted
numerous development projects and also contain
several large data sets including chess end games,
astronomical data, satellite imagery, and multimedia
files.

Figure 6 depicts the size of the active file system as
measured over time by du, the space consumed on the
jukebox, and the size of the jukebox’s data if it were to
be stored on Venti. The ratio of the size of the archival
data and the active file system is also given. As can be
seen, even without using Venti, the storage required to
implement the daily snapshots in Plan 9 is relatively
modest, a result of the block level incremental approach
to generating a snapshot. When the archival data is
stored to Venti the cost of retaining the snapshots is
reduced significantly. In the case of the emelie file
system, the size on Venti is only slightly larger than the
active file system; the cost of retaining the daily
snapshots is almost zero. Note that the amount of
storage that Venti uses for the snapshots would be the
same even if more conventional methods were used to
back up the file system. The Plan 9 approach to
snapshots is not a necessity, since Venti will remove
duplicate blocks.

When stored on Venti, the size of the jukebox data is
reduced by three factors: elimination of duplicate
blocks, elimination of block fragmentation, and
compression of the block contents. Table 2 presents the
percent reduction for each of these factors. Note, bootes
uses a 6 Kbyte block size while emelie uses 16 Kbyte,
so the effect of removing fragmentation is more
significant on emelie.

Bootes: storage size

0

50

100

150

200

250

300

Jul-90

Jan-91

Jul-91

Jan-92

Jul-92

Jan-93

Jul-93

Jan-94

Jul-94

Jan-95

Jul-95

Jan-96

Jul-96

Jan-97

Jul-97

Jan-98

S
iz

e
(G

b
)

Emelie: storage size

0

50

100

150

200

250

300

350

400

450

Jan-97

Jul-97

Jan-98

Jul-98

Jan-99

Jul-99

Jan-00

Jul-00

Jan-01

Jul-01

S
iz

e
(G

b
)

Jukebox
Venti

Active file system

Bootes: ratio of archival to active data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Jul-90

Jan-91

Jul-91

Jan-92

Jul-92

Jan-93

Jul-93

Jan-94

Jul-94

Jan-95

Jul-95

Jan-96

Jul-96

Jan-97

Jul-97

R
at

io

Emelie: ratio of archival to active data

0

1

2

3

4

5

6

7

Jan-97

Jul-97

Jan-98

Jul-98

Jan-99

Jul-99

Jan-00

Jul-00

Jan-01

Jul-01

R
at

io

Jukebox / Active

Venti / Active

Figure 6. Graphs of the various sizes of two Plan 9 file servers.

The 10 year history of the two Plan 9 file servers may
be of interest to other researchers. We have made
available per-block information including a hash of
each block’s contents, all the block pointers, and most
of the directory information. The traces do not include
the actual contents of files nor the file names. There is
sufficient information to reconstruct the structure of the
file system and to track the daily changes to this
structure over time. The traces are available at
http://www.cs.bell-labs.com/~seanq/p9trace.html.

Table 2. The percentage reduction in the size of data
stored on Venti.

bootes emelie
Elimination of duplicates 27.8% 31.3%
Elimination of fragments 10.2% 25.4%
Data Compression 33.8% 54.1%
Total Reduction 59.7% 76.5%

7. Reliability and Recovery

In concert with the development of the Venti prototype,
we have built a collection of tools for integrity checking
and error recovery. Example uses of these tools include:
verifying the structure of an arena, checking there is an
index entry for every block in the data log and vice
versa, rebuilding the index from the data log, and
copying an arena to removable media. These tools
directly access the storage devices containing the data
log and index and are executed on the server.

The directory structure at the end of each area enhances
the efficiency of many integrity and recovery
operations, since it is typically two orders of magnitude
smaller than the arena, yet contains most of the needed
information. The index checking utility, for example, is
implemented as a disk based sort of all the arena
directories, followed by a comparison between this
sorted list and the index. Our prototype currently
contains approximately 150 million blocks using 250
Gbytes of storage. An index check takes 2.2 hours,
which is significantly less than the 6 hours it takes to
read all the log data.

An additional integrity and recovery feature is the
association of a type identifier with every block. This 8
bit identifier is included with all client read and write
operations and has the effect of partitioning the server
into multiple independent domains. The idea is that
type indicates the interpretation of the data contained in
the block. A client can use this feature, for example, to

indicate that a block is the root node for a tree of
blocks. Currently, the data format associated with a
type is left entirely to the client; the server does not
interpret the type other that to use it in conjunction with
a fingerprint as the key with which to index a block.

One use of the type identifier is to assist the
administrator in locating blocks for which a user has
accidentally lost the fingerprint. Using a tool on the
server, the data log can be scanned for blocks that
match specified criteria, including the block type, the
write time, and user identifier. The type makes it
relatively simple to locate forgotten root blocks. Future
uses for the type might include the ability for the server
to determine the location of fingerprints within a block,
enabling the server to traverse the data structures that
have been stored.

By storing the data log on a RAID 5 disk array, our
server is protected against single drive failures.
Obviously, there are many scenarios where this is not
sufficient: multiple drives may fail, there may be a fire
in the machine room, the RAID firmware may contain
bugs, or the device may be stolen.

Additional protection could be obtained by using one or
more off-site mirrors for the server. We have not yet
implemented this strategy, but the architecture of Venti
makes this relatively simple. A background process on
the server copies new blocks from the data log to the
mirrors. This copying can be achieved using the Venti
protocol; the server is simply another client to the
mirror.

Even mirroring may not be sufficient. The
implementation of Venti may contain bugs that can be
exploited to compromise the server. An automated
attack may delete data on many servers simultaneously.
Storage devices that provide low level enforcement of a
write-once policy would provide protection for such an
attack. Write-once read-many optical jukeboxes often
provide such protection, but this is not yet common for
magnetic disk based storage systems. We have thus
resorted to copying the sealed arenas onto removable
media.

8. Related Work

The Stanford Archival Vault [2] is a prototype archival
repository intended for digital libraries. The archive
consists of a write-once log of digital objects (files) and
several auxiliary indexes for locating objects within the
log. Objects are identified by the hash of their contents
using a cyclic redundancy check (CRC). Unlike Venti,

this system has no way to share data between objects
that are partially the same, or to build up complex data
structures such as a file system hierarchy. Rather, the
archive consists of a collection of separate objects with
a limited ability to group objects into sets.

On Venti, blocks are organized into more complex data
structures by creating hash-trees, an idea originally
proposed by Merkle [11] for an efficient digital
signature scheme.

The approach to block retrieval in the Read-Only
Secure File System (SFSRO) [3] is comparable to
Venti. Blocks are identified by the Sha1 hash of their
contents and this idea is applied recursively to build up
more complex structures. The focus of this system is
security, not archival storage. An administrator creates
a digitally signed database offline. The database
contains a public read-only file system that can be
published on multiple servers and efficiently and
securely accessed by clients. SFSRO outperforms
traditional methods for providing data integrity between
a client and a file server, demonstrating an attractive
property of hash-based addressing.

Given their similarities, it would be simple to
implement SFSRO on top of Venti. The goal of Venti is
to provide a flexible location for archival storage and
SFSRO is a good example of an application that could
use this capability. In fact, using Venti would provide a
trivial solution to SFSRO’s problem with stale NFS
handles since data is never deleted from Venti and thus
a stale handle will never be encountered.

Content-Derived Names [6] are another example of
naming objects based on a secure hash of its contents.
This work addresses the issue of naming and managing
the various binary software components, in particular
shared libraries, that make up an application.

The philosophy of the Elephant file system [18] is
similar to Venti; large, cheap disks make it feasible to
retain many versions of data. A feature of the Elephant
system is the ability to specify a variety of data
retention policies, which can be applied to individual
files or directories. These policies attempt to strike a
balance between the costs and benefits of storing every
version of a file. In contrast, Venti focuses on the
problem of how to store information after deciding that
it should be retained in perpetuity. A system such as the
Elephant file system could incorporate Venti as the
storage device for the permanent “landmark” versions
of files, much as the Plan 9 file system will use Venti to
archive snapshots.

Self-Securing Storage [19] retains all versions of file
system data in order to provide diagnosis and recovery
from security breaches. The system is implemented as a
self-contained network service that exports an object-
based disk interface, providing protection from
compromise of the client operating system. Old data is
retained for a window of time and then deleted to
reclaim storage.

Venti provides many of the features of self-securing
storage: the server is self-contained and accessed
through a simple low-level protocol, malicious users
cannot corrupt or delete existing data on the server, and
old versions of data are available for inspection. It is
unlikely that a system would write every file system
operation to Venti since storage is never reclaimed, but
not deleting data removes the constraint that an
intrusion must be detected within a limited window of
time. A hybrid approach might retain every version for
some time and some versions for all time. Venti could
provide the long-term storage for such a hybrid.

9. Future Work

Venti could be distributed across multiple machines;
the approach of identifying data by a hash of its
contents simplifies such an extension. For example, the
IO performance could be improved by replicating the
server and using a simple load balancing algorithm.
When storing or retrieving a block, clients direct the
operation to a server based on a few bits of the
fingerprint. Such load balancing could even be hidden
from the client application by interposing a proxy
server that performs this operation on behalf of the
client.

Today, Venti provides little security. After
authenticating to the server, clients can read any block
for which they know the fingerprint. A fingerprint does
act as a capability since the space of fingerprints is
large and the Venti protocol does not include a means
of enumerating the blocks on the server. However, this
protection is weak as a single root fingerprint enables
access to an entire file tree and once a fingerprint is
known, there is no way to restrict access to a particular
user. We are exploring ways of providing better access
control.

To date, the structures we have used for storing data on
Venti break files into a series of fixed sized blocks.
Identical blocks are consolidated on Venti, but this
consolidation will not occur if the data is shifted within
the file or an application uses a different block size.
This limitation can be overcome using an adaptation of

Manber’s algorithm for finding similarities in files [9].
The idea is to break files into variable sized blocks
based on the identification of anchor or break points,
increasing the occurrence of duplicate blocks [12]. Such
a strategy can be implemented in client applications
with no change to the Venti server.

A more detailed analysis of the decade of daily
snapshots of the Plan 9 file systems might be
interesting. The trace data we have made publicly
available contains approximately the same information
used for other studies of long term file activity [4].

10. Conclusion

The approach of identifying a block by the Sha1 hash of
its contents is well suited to archival storage. The write-
once model and the ability to coalesce duplicate copies
of a block makes Venti a useful building block for a
number of interesting storage applications.

The large capacity of magnetic disks allows archival
data to be retained and available on-line with
performance that is comparable to conventional disks.
Stored on our prototype server is over a decade of daily
snapshots of two major departmental file servers. These
snapshots are stored in a little over 200 Gbytes of disk
space. Today, 100 Gbytes drives cost less than $300
and IDE RAID controllers are included on many
motherboards. A scaled down version of our server
could provide archival storage for a home user at an
attractive price. Tomorrow, when terabyte disks can be
had for the same price, it seems unlikely that archival
data will be deleted to reclaim space. Venti provides an
attractive approach to storing that data.

11. Acknowledgments

This paper was improved by comments and suggestions
from Peter Bosch, Eric Grosse, Lorenz Huelsbergen,
Rob Pike, Ross Quinlan, and Cliff Young and six
anonymous reviewers. The paper’s shepherd was Ethan
L. Miller. We thank them all for their help.

12. References

[1] Ann Chervenak, Vivekenand Vellanki, and
Zachary Kurmas. Protecting file systems: A
survey of backup techniques. In Proceedings Joint
NASA and IEEE Mass Storage Conference, March
1998.

[2] Arturo Crespo and Hector Garcia-Molina.
Archival storage for digital libraries. In

Proceedings of the 3rd ACM International
Conference on Digital Libraries, 1998.

[3] Kevin Fu, Frans Kaashoek, and David Mazières.
Fast and secure distributed read-only file system.
In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation,
2000.

[4] Timothy J. Gibson, Ethan L. Miller, and Darrell
D. E. Long. Long-term file activity and inter-
reference patterns. In Proceedings, 24th

International Conference on Technology
Management and Performance Evaluation of
Enterprise-Wide Information Systems, Computer
Measurement Group, December 1998.

[5] Dave Hitz, James Lau, and Michael Malcolm, File
system design for an NFS file server appliance, In
Proceedings of the Winter 1994 USENIX
Conference, San Francisco, CA, January 1994.

[6] J. K. Hollingsworth and E. L. Miller. Using
content-derived names for configuration
management. In Proceeding of the 1997 ACM
Symposium on Software Reusability, Boston, May
1997.

[7] John Howard, Michael Kazar, Sherri Menees,
David Nichols, Mahadev Satyanarayanan, Robert
Sidebotham, and Michael West. Scale and
performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-81,
February 1988.

[8] Norman C. Hutchinson, Stephen Manley, Mike
Federwisch, Guy Harris, Dave Hitz, Steven
Kleiman, and Sean O'Malley. Logical vs. physical
file system backup. In Proceedings of the 3rd

USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 1999.

[9] Udi Manber. Finding similar files in a large file
system. In Proceedings of the Winter 1994
USENIX Conference, San Francisco, CA, January
1994.

[10] Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[11] Ralph C. Merkle. Protocols for public-key
cryptosystems. In Proceedings of the IEEE

Symposium on Security and Privacy, pp. 122-133,
April 1980.

[12] Athicha Muthitacharoen, Benjie Chen, and David
Mazières. A low-bandwidth network file system.
In Proceedings of the 18th Symposium on
Operating Systems Principles, October 2001.

[13] National Institute of Standards and Technology,
FIPS 180-1. Secure Hash Standard. US
Department of Commerce, April 1995.

[14] National Institute of Standards and Technology,
Draft FIPS 180-2. Secure Hash Standard. US
Department of Commerce, May 2001.

[15] Evi Nemeth, Garth Snyder, Scott Seebass, and
Trent R. Hein. UNIX System Administration
Handbook 3rd Edition, Prentice Hall, 2001.

[16] Rob Pike, Dave Presotto, Sean Dorward, Bob
Flandrena, Ken Thompson, Howard Trickey, and
Phil Winterbottom. Plan 9 from Bell Labs,
Computing Systems, Vol. 8, 3, pp. 221-254,
Summer 1995.

[17] Sean Quinlan. A cache worm file system.
Software-Practice and Experience, Vol 21, 12, pp
1289-1299, December 1991.

[18] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Alistair C. Veitch, Ross W. Carton
and Jacob Ofir. Deciding when to forget in the
Elephant file system. In Proceedings of the 17th

Symposium on Operating Systems Principles,
December 12-15, 1999.

[19] John. D. Strunk, Garth R. Goodson, Michael L.
Scheinholtz, Craig A.N. Soules, and Gregory R.
Ganger. Self-securing storage: protecting data in
compromised systems. In Proceedings of the 4th

Symposium on Operating Systems Design and
Implementation, October 2000.

[20] D. A. Thompson and J. S. Best. The future of
magnetic data storage technology, IBM Journal of
Research and Development, Vol 44, 3, pp. 311-
322, May 2000.

[21] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression, IEEE Trans. Inform.
Theory, vol. IT-23, pp. 337-343, May 1977.

